## Basics

- Functions: are maps in which every $x$ value has only one image $f(x)=y$
$\bullet y$-intercept: Where $f$ crosses $y$-axis $\rightarrow$ Let $x=0$, then find $y=f(0)$
$\bullet x$-intercept (zero or root): Where $f$ crosses $x$-axis $\rightarrow$ Let $y=0$, then find $x$
- Shifting and reflections: Given a function $y=f(x)$ and a constant $c>0$, then

1) $y=f(x)+c$ : Shift the graph of $f(x) c$ units upward.
2) $y=f(x)-c$ : Shift the graph of $f(x) c$ units downward.
3) $y=f(x+c)$ : Shift the graph of $f(x) c$ units leftward.
4) $y=f(x-c)$ : Shift the graph of $f(x) c$ units rightward.
5) $y=-f(x)$ : Reflect the graph of $f(x)$ about $x$-axis.
6) $y=f(-x)$ : Reflect the graph of $f(x)$ about $y$-axis





- Linear functions (Lines):
- General Form: $y=f(x)=m x+b$, where $m=\frac{\Delta y}{\Delta x}=y^{\prime}$ is the slope of the line.
- $\left(y-y_{0}\right)=m\left(x-x_{0}\right)$ : Gives the equation of the line with slope $m$ and passes through $\left(x_{0}, y_{0}\right)$
- Horizontal line: $y=c \rightarrow$ Slope $=0$
-: Vertical line: $x=c \rightarrow$ Slope undefined
-: If $L_{1}$ and $L_{2}$ are two lines with slopes $m_{1}$ and $m_{2}$ respectively, then

1) $L_{1}$ and $L_{2}$ are parallel if $m_{1}=m_{2}$
2) $L_{1}$ and $L_{2}$ are perpendicular (normal) if $m_{1}=-\frac{1}{m_{2}}$

- Solving Equations and inequalities with absolute value:
- $|x|=a \rightarrow x= \pm a$
- $|x| \leq a \rightarrow-a \leq x \leq a$
- $|x| \geq a \rightarrow x \leq-a$ or $x \geq a$
- Special Factorizations:
- $x^{2}-a^{2}=(x-a)(x+a)$
- $x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)$
- $x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right)$
- Quadratic functions (Parabolas):
- General Form: $y=f(x)=a x^{2}+b x+c ; a \neq 0$
- Vertex: is the point $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$
- Discriminant $=b^{2}-4 a c$

1) If discriminant $>0$, then $f(x)$ has two real roots.
2) If discriminant $=0$, then $f(x)$ has one real root.
3) If discriminant $<0$, then $f(x)$ has no real roots.

- Quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

If $a>0$ then the parabola is open upward (concave up)
If $a<0$ then the parabola is open downward (concave down)

- Square Completion: Given $x^{2}+b x+c$, (notice that $a=1$ ), add $\pm\left(\frac{b}{2}\right)^{2}$
$\rightarrow x^{2}+b x+c=x^{2}+b x+\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c=\left(x-\left|\frac{b}{2}\right|\right)^{2}-\left(\frac{b}{2}\right)^{2}+c$
Ex: $x^{2}-6 x+11=x^{2}-6 x+9-9+11=(x-3)^{2}+2$
- Special Quadratic Curves in $y: \quad x=y^{2}$ and $x=-y^{2}$
$x=y^{2}$ : a parabola open to the right with vertex $(0,0)$
$x=-y^{2}$ : a parabola open to the left with vertex $(0,0)$
Examples of shifts on $x=y^{2}$ :

1) $x=y^{2}+3:$ Shift the graph of $x=y^{2}$ three units to the right
2) $x=y^{2}-3$ : Shift the graph of $x=y^{2}$ three units to the left
3) $x=(y+3)^{2}$ : Shift the graph of $x=y^{2}$ three units downward
4) $x=(y-3)^{2}$ : Shift the graph of $x=y^{2}$ three units upward


- Circles:
$(x-a)^{2}+(y-b)^{2}=r^{2}:$ a circle with center $(a, b)$ and radius $r$
- Unit circle: $x^{2}+y^{2}=1:$ center $=(0,0)$ and radius $=1$
- Determine the sign of $y=f(x)$ : Sometimes we need to know when $y$ is positive (above $x$-axis) and when $y$ is negative (below $x$-axis)

1) Polynomials: Find the zeros, if any, then substitute values

Ex: $f(x)=4-2 x \rightarrow 4-2 x=0 \rightarrow x=2 \quad($ take $f(0)=4>0$ but $f(3)=-2<0)$


Ex: $f(x)=x^{2}-x-2 \rightarrow x^{2}-x-2=0 \rightarrow x=-1,2$
$(f(-2)=4>0, f(0)=-2<0, f(3)=4>0)$


Ex: $f(x)=x^{3}-4 x \rightarrow x^{3}-4 x=0 \rightarrow x=-2,0,2$


Ex: $f(x)=x^{2}+3$ has no zeros, so substitute any value $f(1)=4>0$

2) Rational functions $=\frac{\text { polynomial }}{\text { polynomial }}$ : Determine sign of numerator, then denominator, then divide Ex: $f(x)=\frac{x^{3}+1}{x^{2}-4}$

Numerator: $x^{3}+1=0 \rightarrow x=-1$
Denominator: $x^{2}-4=0 \rightarrow x=-2,2$
Numerator


Denomiantor


Ex: $f(x)=\frac{-2}{x^{2}+1}$
'The numerator is always negative and the denominator is always positive, so $f$ is always negative.

$$
f(x)
$$

$\qquad$

- Trigonometric functions

$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
$\sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{1}{\cos \theta}$
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{\sin \theta}{\cos \theta}=\frac{1}{\cot \theta}$

| $\theta$ | $\sin \theta$ | $\cos \theta$ |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| $\frac{\pi}{6}$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ |
| $\frac{\pi}{4}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{\sqrt{2}}$ |
| $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ |
| $\frac{\pi}{2}$ | 1 | 0 |
| $\pi$ | 0 | -1 |
| $\frac{3 \pi}{2}$ | -1 | 0 |
| $2 \pi$ | 0 | 1 |

$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\csc \theta=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{1}{\sin \theta}$
$\cot \theta=\frac{\text { adjacent }}{\text { opposite }}=\frac{\cos \theta}{\sin \theta}=\frac{1}{\tan \theta}$

- Unit Circle and trigonometric functions:

Recall: Unit Circle: $x^{2}+y^{2}=1$ and $\cos ^{2} \theta+\sin ^{2} \theta=1$
$\rightarrow$ For any point on this circle: $(x, y)=(\cos \theta, \sin \theta)$,where $\theta$ : is the angle (counterclockwise) between the positive $x$-axis and the line segment form origin to point $(x, y)$
Ex: $\quad\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)=\left(\cos \left(\frac{\pi}{6}\right), \sin \left(\frac{\pi}{6}\right)\right),(0,1)=\left(\cos \left(\frac{\pi}{2}\right), \sin \left(\frac{\pi}{2}\right)\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\left(\cos \left(\frac{3 \pi}{4}\right), \sin \left(\frac{3 \pi}{4}\right)\right)$



