Basics

- Functions: are maps in which every x value has only one image f(x) = y
- •y-intercept: Where f crosses y-axis \rightarrow Let x = 0, then find y = f(0)
- •*x*-intercept (zero or root): Where f crosses x-axis \rightarrow Let y = 0, then find x
- Shifting and reflections: Given a function y = f(x) and a constant c > 0, then
 - 1) y = f(x) + c: Shift the graph of f(x) c units upward.
 - 2) y = f(x) c: Shift the graph of f(x) c units downward.
 - 3) y = f(x + c): Shift the graph of f(x) c units leftward.
 - 4) y = f(x c): Shift the graph of f(x) c units rightward.
 - 5) y = -f(x): Reflect the graph of f(x) about x-axis.
 - 6) y = f(-x): Reflect the graph of f(x) about y-axis

- Linear functions (Lines):
- General Form: y = f(x) = mx + b, where $m = \frac{\Delta y}{\Delta x} = y'$ is the slope of the line.
- $(y y_0) = m(x x_0)$: Gives the equation of the line with slope m and passes through (x_0, y_0)
- •: Horizontal line: $y = c \rightarrow \text{Slope} = 0$
- •: Vertical line: $x = c \rightarrow$ Slope undefined
- •: If L_1 and L_2 are two lines with slopes m_1 and m_2 respectively, then
 - 1) L_1 and L_2 are parallel if $m_1 = m_2$
 - 2) L_1 and L_2 are perpendicular (normal) if $m_1 = -\frac{1}{m_2}$
- Solving Equations and inequalities with absolute value:
 - $|x| = a \rightarrow x = \pm a$
 - $|x| \le a \to -a \le x \le a$
 - $|x| \ge a \to x \le -a \text{ or } x \ge a$
- Special Factorizations:
 - $x^2 a^2 = (x a)(x + a)$
 - $x^3 a^3 = (x a)(x^2 + ax + a^2)$
 - $x^3 + a^3 = (x+a)(x^2 ax + a^2)$

- Quadratic functions (Parabolas):
- General Form: $y = f(x) = ax^2 + bx + c$; $a \neq 0$
- Vertex: is the point $(\frac{-b}{2a}, f(\frac{-b}{2a}))$
- Discriminant = $b^2 4ac$
 - 1) If discriminant > 0, then f(x) has two real roots.
 - 2) If discriminant = 0, then f(x) has one real root.
 - 3) If discriminant < 0, then f(x) has no real roots.

• Quadratic formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If a > 0 then the parabola is open upward (concave up)

If a < 0 then the parabola is open downward (concave down)

• Square Completion: Given $x^2 + bx + c$, (notice that a = 1), add $\pm (\frac{b}{2})^2$ $\rightarrow x^2 + bx + c = x^2 + bx + (\frac{b}{2})^2 - (\frac{b}{2})^2 + c = (x - |\frac{b}{2}|)^2 - (\frac{b}{2})^2 + c$ Ex: $x^2 - 6x + 11 = x^2 - 6x + 9 - 9 + 11 = (x - 3)^2 + 2$

- Special Quadratic Curves in y: $x = y^2$ and $x = -y^2$
 - $x = y^2$: a parabola open to the right with vertex (0, 0) $x = -y^2$: a parabola open to the left with vertex (0, 0)Examples of shifts on $x = y^2$:

1) $x = y^2 + 3$: Shift the graph of $x = y^2$ three units to the right

2) $x = y^2 - 3$: Shift the graph of $x = y^2$ three units to the left

3) $x = (y+3)^2$: Shift the graph of $x = y^2$ three units downward

4) $x = (y - 3)^2$: Shift the graph of $x = y^2$ three units upward

•Circles:

 $(x-a)^2 + (y-b)^2 = r^2$: a circle with center (a,b) and radius r

• Unit circle: $x^2 + y^2 = 1$: center= (0, 0) and radius = 1

• Determine the sign of y = f(x): Sometimes we need to know when y is positive (above x-axis) and when y is negative (below x-axis)

1) Polynomials: Find the zeros, if any, then substitute values

Ex:
$$f(x) = 4 - 2x \to 4 - 2x = 0 \to x = 2$$
 (take $f(0) = 4 > 0$ but $f(3) = -2 < 0$)

Ex:
$$f(x) = x^2 - x - 2 \rightarrow x^2 - x - 2 = 0 \rightarrow x = -1, 2$$

 $(f(-2) = 4 > 0, f(0) = -2 < 0, f(3) = 4 > 0)$

$$++$$
 -- ++
-1 2

Ex: $f(x) = x^3 - 4x \rightarrow x^3 - 4x = 0 \rightarrow x = -2, 0, 2$

Ex: $f(x) = x^2 + 3$ has no zeros, so substitute any value f(1) = 4 > 0

2) Rational functions = $\frac{\text{polynomial}}{\text{polynomial}}$: Determine sign of numerator, then denominator, then divide

Ex: $f(x) = \frac{x^3+1}{x^2-4}$ Numerator: $x^3 + 1 = 0 \rightarrow x = -1$

Denominator:
$$x^2 - 4 = 0 \rightarrow x = -2, 2$$

Numerator -- ++ -1

Denomiantor
$$++$$
 $- ++$
 -2 2
 $f(x)$ $- ++$ $- ++$
 -2 -1 2

Ex: $f(x) = \frac{-2}{x^2+1}$

'The numerator is always negative and the denominator is always positive, so f is always negative.

f(x) ————

• Trigonometric functions

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$
$$\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}} = \frac{1}{\sin \theta}$$
$$\cot \theta = \frac{\text{adjacent}}{\text{opposite}} = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}$$

• Unit Circle and trigonometric functions:

Recall: Unit Circle: $x^2 + y^2 = 1$ and $\cos^2 \theta + \sin^2 \theta = 1$

 \rightarrow For any point on this circle: $(x, y) = (\cos \theta, \sin \theta)$, where θ : is the angle (counterclockwise) between the positive x-axis and the line segment form origin to point (x, y)

Ex:
$$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) = \left(\cos\left(\frac{\pi}{6}\right), \sin\left(\frac{\pi}{6}\right)\right), \ (0, 1) = \left(\cos\left(\frac{\pi}{2}\right), \sin\left(\frac{\pi}{2}\right)\right), \ \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \left(\cos\left(\frac{3\pi}{4}\right), \sin\left(\frac{3\pi}{4}\right)\right)$$

